电气比例阀和伺服阀按其功能可分为压力式和流量式两种。压力式比例/伺服阀将输给的电信号线性地转换为气体压力;流量式比例/伺服阀将输给的电信号转换为气体流量。由于气体的可压缩性,使气缸或气马达等执行元件的运动速度不仅取决于气体流量。还取决于执行元件的负载大小。因此精地控制气体流量往往是不要的。单纯的压力式或流量式比例/伺服阀应用不多,往往是压力和流量结合在一起应用更为广。
电气比例阀和伺服阀主要由电---机械转换器和气动放大器组成。但随着近年来廉价的电子集成电路和检测器件的大量出现,在1电---气比例/伺服阀中越来越多地采用了电反馈方法,这也大大提了比例/伺服阀的性能。电---气比例/伺服阀可采用的反馈控制方式,阀内就增加了位移或压力检测器件,有的还集成有控制放大器。
一、滑阀式电气方向比例阀
流量式四通或五通比例控制阀可以控制气动执行元件在两个方向上的运动速度,这类阀也称方向比例阀。图示即为这类阀的结构原理图。它由直流比例电磁铁1、阀芯2、阀套3、阀体4、位移传感器5和控制放大器6等赞成。位移传感器采用电感式原理,它的作用是将比例电磁铁的衔铁位移线性地转换为电压信号输出。控制放大器的主要作用是:
1) 将位移传感器的输出信号进行放大;
2) 比较指令信号Ue和位移反馈信号Uf,得到两者的差植 U;
3) 将 U放大,转换为电流信号I输出。此外,为了改善比例阀的性能,控制放大器还含有对反馈信号Uf和电压差 U的处理环节。比如状态反馈控制和PID调节等。
带位置反馈的滑阀式方向比例阀,其工作原理是:在初始状态,控制放大器的指令信号UF=0,阀芯处于零位,此时气源口P与A、B两端输出口同时被切断,A、B两口与排气口也切断,无流量输出;同时位移传感器的反馈电压Uf=0。若阀芯受到某种干扰而偏离调定的零位时,位移传感器将输出壹定的电压Uf,控制放大器将得到的 U=-Uf放大后输出给电流比例电磁铁,电磁铁产生的推力迫使阀芯回到零位。若指令Ue>0,则电压差 U增大,使控制放大器的输出电流增大,比例电磁铁的输出推力也增大,推动阀芯右移。而阀芯的右移又引起反馈电压Uf的增大,直至Uf与指令电压Ue基本相等,阀芯达到力平衡。此时。
Ue=Uf=KfX(Kf为位移传感器增益)
上式表明阀芯位移X与输入信号Ue成正比。若指令电压信号Ue<0,通过上式类似的反馈调节过程,使阀芯左移壹定距离。
阀芯右移时,气源口P与A口连通,B口与排气口连通;阀芯左移时,P与B连通,A与排气口连通。节流口开口量随阀芯位移的增大而增大。上述的工作原理说明带位移反馈的方向比例阀节流口开口量与气流方向均受输入电压Ue的线性控制。
这类阀的优点是线性度好,滞回小,动态性能高。
二、滑阀式二级方向伺阀
下图所示为一种动圈式二级方向伺服阀。它主要由动圈式力马达、喷嘴挡板式气动放大器、滑阀式气动放大器、反馈弹簧等组成。喷嘴档板气动放大器做前置级,滑阀式气动放大器做功率级。
这种二级方向伺服阀的工作原理是:在初始状态,左右两动圈式力马达均无电流输入,也无力输出。在喷嘴气流作用下,两挡板使可变节流器处于全开状态,容腔3、7内压力几乎与大气压相同。滑阀阀芯被装在两侧的反馈弹簧5、6推在中位,两输出口A、B与气源口P和排气口O均被隔开。
当某个动圈式马达有电流输入是(例如右侧力马达),输出与电流I成正比的推力Fm将挡板推向喷嘴,使可变节流器的流通面积减小,容腔6内的气压P6升高,升高后的P6又通过喷嘴对档板产生反推力Ff。当Ff与Fm平衡时,P6趋于稳定,其稳定值乘以喷嘴面积Ay等于电磁力。另一方面,P6升高使阀芯两侧产生压力差,该压力差作用于阀芯断面使阀芯克服反馈弹簧力左移,并使左边反馈弹簧的压缩量增加,产生附加的弹簧力Fs,方向向右,大小与阀芯位移X成正比。当阀芯移动到壹定位置时,弹簧附加作用力与7、3容腔的压差对阀芯的作用力达到平衡,阀芯不在移动。此时同时存在阀芯和挡板的受力平衡方程式:
Fs=KsX=(P6-P5)Ax
Ff=P6Ay=KiI
KS----反馈弹簧刚度
Ax----阀芯断面积
Kf----动圈式力马达的电流增益。
在上述的调节过程中,左侧的喷嘴挡板终处于全开状态,可以认为P5=0,代入后整理上述两式可得
X=(AxKi/AyKs)*I
阀芯位移与输入电流成正比。当另一侧动圈式马达有输入时,通过上述类似的调节过程,阀芯将向相反方向移动壹定距离。
当阀芯左移时,气源口P与输出口A连通,B口通大气;阀芯右移时,P与B通,A口通大气。阀芯位移量越大,阀口开口量也越大。这样就实现了对气流的流动方向和流量的控制。
这类阀采用动圈式马达,动态性能好,缺点是结构比较复杂。